Volcano Blog by Tom Pering
  • Blog
  • UV Cameras
  • Publications
  • Slug Calculator
  • About Me

The Taylor Bubble Calculator

​Welcome to the Taylor Bubble calculator. This calculator has been created to enable the rapid calculation of parameters associated with Taylor bubble (gas slug) flow in a volcanic context. Description of the equations, their sources and more features will be added soon. Note: the section "Taylor Bubble and Mass Results" is still under construction, and as such some of the results may not be correct. The value for "film thickness" may also be in error, I am working on this issue! For the accompanying blog post - see here. 

Input Values

   
   
   
   
   

Dimensionless Numbers and Taylor Bubble Parameters

Inverse Viscosity (Nf ) Number:  0 
Froude Number*:  0 
Reynolds Number (For Bubbles):  0 
Morton Number:  0 
Eötvös Number:  0 
Weber Number:  0 
Film Thickness (m)1:  0 
Taylor Bubble Base Rise Speed (m s-1)*:  0 
Wake Length (m)2:  0 
Interaction Length (m)3:  0 
Multiple Slugs, Max Base Rise Speed (m s-1)4:  0 
 

Taylor Bubble Mass and Length Inputs

   
   
   
   
   
   

Taylor Bubble Mass and Length Results

Total Slug Mass (kg):  0 
Slug Volume at Burst (m3):  0 
Slug Length at Initial Depth (m):  0 
Slug Length at Burst (m) - Ideal Gas Law: (TBC)  0 
Slug Length at Burst (m) - Del Bello et al. (2012)5:  0 
Slug Length at Burst (m) - James et al. (2008)6: (TBC)  0 
Slug Pressure at Initial Depth (Pa):  0 
Slug Bursting Pressure (Pa) - Del Bello et al. (2012)5:  0 
Slug Bursting Pressure (Pa) - James et al. (2008)6: (TBC)  0 
Burst Vigour* (Dimensionless - Pslim)7:  0 

* For Eötvös Numbers of >40.
**A value of >1 will likely burst explosively, a value <1 passively, see paper7.

References

1Llewellin, E. W., Del Bello, E., Taddeucci, J., Scarlato, P., Lane, S. J., 2012. The thickness of the falling film of liquid around a Taylor bubble. Proceedings of the Royal Society A 468, DOI:10.1098/rspa.2011.0476

2Campos, J. B. L. M., Guedes de Carvalho, J. R. F., 1988. An experimental study of the wake of gas slugs rising in liquids, Journal of Fluid Mechanics 196, 27-37, DOI:10.1017/S0022112088002599

3Pinto, A. M. F. R., Campos, J. B. L. M., 1996. Coalescence of two gas slugs rising in a vertical column of liquid. Chemical Engineering Science 51 (1), 45-54, DOI:10.1016/0009-2509(95)00254-5

4Krishna, R., Urseanu, M. I., van Baten, J. M., Ellenberger, J., 1999. Rise velocity of a swarm of large gas bubbles in liquids. Chemical Engineering Science 54, 171-183, DOI:10.1016/S0009-2509(98)00245-0

5Del Bello, E., Llewellin, E.W., Taddeuicci, J., Scarlato, P., Lane, S.J., 2012. An analytical model for gas overpressure in slug-drive explosions: insights into strombolian volcanic eruptions. J. Geophys. Res. 117 (B2), DOI:10.1029/2011JB008747.

6James, M.R., Lane, S. J., Corder, S. B., 2008. Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas. Geological Society, London, Special Publications 307, 147-167, DOI:10.1144/SP307.9

7James, M. R., Lane, S. J., Wilson, L., Corder, S. B., 2009. Degassing at low magma-viscosity volcanoes: Quantifying the transition between passive bubble-burst and Strombolian eruption. Journal of Volcanology and Geothermal Research 180, 81-88, DOI:10.1016/j.volgeores.2008.09.002


An informative blog for anyone interested about all things volcano related!
  • Blog
  • UV Cameras
  • Publications
  • Slug Calculator
  • About Me